Solubilities of Potassium Hydrogen Tartrate and Potassium Chloride in Water + Ethanol Mixtures

Paula Sousa and Ana M. C. Lopes*

Chemistry Department, University of Beira Interior, 6201 001 Covilhã, Portugal

The solubilities of potassium hydrogen tartrate (KHT) in water, water + ethanol, and water + ethanol + KCl, as well as of potassium chloride in water + ethanol mixtures, were determined, using the polythermal method, at different temperatures. Equations were adjusted to the experimental data, enabling the calculation of salts solubilities as a function of temperature and ethanol content in the solvent. For KHT, an additional dependence on the KCl concentration was also included. Experimental data were compared with literature values.

Introduction

The potassium salt of tartaric acid, potassium hydrogen tartrate, occurs naturally in wines during the must fermentation. To prevent the unwanted formation of potassium hydrogen tartrate crystals in bottles, most wines are stabilized by crystallization of the salt, prior to bottling.

The modeling of this process makes use of thermodynamic data for potassium hydrogen tartrate in water + ethanol solutions. The activities of potassium hydrogen tartrate can be obtained by an indirect potentiometric method, that requires the presence in the solution of a second salt with a common ion and for which a specific electrode is available.

During the course of this study, solubility data of potassium hydrogen tartrate in water + ethanol mixtures and in the presence of KCl, added as the second salt, were obtained.

The solubility data found in the literature for potassium hydrogen tartrate in water are scarce,^{1,2} and there is considerable discrepancy in the results,¹ for temperatures other than 298 K. In other solvents or mixed solvents, potassium hydrogen tartrate solubility data are nonexistent.

For the ternary system KCl + water + ethanol the solubilities available in the older literature^{3,4} show deviations from author to author, that, at 25 °C and 20 mass % ethanol, can go up to 3%. Recently published KCl solubility values,⁵ obtained over a wide range of ethanol content in the system although at only three temperatures, compare well with some sets of the older data³ (at 50 °C and 10 mass % ethanol) within $\pm 0.3\%$.

Experimental Section

Analytical grade potassium hydrogen tartrate (Merck, 99.5%+) and potassium chloride (Fluka AG, 99.5%+) were used. Prior to measurements, the salts were dried in an oven, at 110 °C, for 24 h. Ethanol was supplied by Pronalab R (99.8%+).

All solutions were prepared using deionized water with the specific conductivity 2 μ S cm⁻¹.

Apparatus and Procedures. Solutions were prepared by mass with an uncertainty of $\pm 1 \times 10^{-4}$ g.

The polythermal method developed by Potter and Clynne⁶ was used to determine the solubilities presented here.

The experiments were carried out in a tightly sealed 300 mL BOD flask (bottle for the biological oxygen demand determination), equipped with a Teflon-coated magnetic stirrer and immersed in a thermostated bath controlled to ± 0.05 K. The temperature was raised by increments which were made progressively smaller as the number and size of the existing crystals decreased (heating rate of about 0.1 K/h near the equilibrium point). Equilibrium conditions corresponding to the bulk composition of the system were assumed to be reached when the last crystal was dissolved.

The temperature was measured in the thermostated fluid with a HP quartz thermometer 2804 A (calibrated to the ITS-90 scale, over the temperature range 273.16 K to 429.7485 K, against the triple point of pure water and the freezing point of indium) and read with a precision of ± 0.04 K. The temperature difference outside and inside the BOD flask never exceeded ± 0.01 K after 15 min of equilibration. The saturation temperatures reported here are the average values of duplicated measurements with a reproducibility of 0.05 K. To reach temperatures below room temperature, a refrigerator (P Selecta) was used. The saturation temperatures are accurate to ± 0.1 K. The uncertainties for the potassium hydrogen tartrate and KCl solubilities are ($\pm 0.000 \ 000 \ 6 \ and \pm 0.000 \ 01$) kg_{salt}/kg_{water}, respectively.

Solubility Measurements. The potassium hydrogen tartrate solubility data were obtained for aqueous solutions containing (0, 0.01, 0.02, and 0.03) m KCl and in aqueous solutions of ethanol (10 mass % in the solvent) containing (0, 0.01, 0.02, and 0.023) m KCl. For all the KCl contents, the potassium hydrogen tartrate solubility data were obtained in the temperature range (277 to 310) K.

The solubilities of KCl in water were obtained from (280 to 360) K. In aqueous solutions of ethanol (5, 10, 15, and 20 mass %, in the solvent), the upper limit of the temperature range explored was progressively reduced, as the ethanol content increased. To prevent evaporation losses of ethanol, the maximum temperature reached for 20% ethanol-water mixtures was 316 K.

Results and Discussion

Potassium Hydrogen Tartrate Solubility Data. The experimental results for the potassium hydrogen tartrate

10.1021/je010105x CCC: \$20.00 © 2001 American Chemical Society Published on Web 09/13/2001

Figure 1. Experimental (symbols) and calculated (lines) solubilities of potassium hydrogen tartrate in aqueous solution with different KCl concentrations (g_{salt}/kg_{water}): \triangle , 0; \bigcirc , 0.75; +, 1.5; \diamondsuit , 2.24.

Table 1. Solubility of Potassium Hydrogen Tartrate, S_{KHT} (kg_{salt}/kg_{water}), in Water–Ethanol Mixtures with Various Ethanol Mass Fractions in the Solvent, w_{E} , and for Different KCl Contents, m_{KCl} (kg_{salt}/kg_{water})

<i>T</i> /K	$10^3 S_{\rm KHT}$	<i>T</i> /K	$10^3 S_{\rm KHT}$	<i>T</i> /K	$10^3 S_{\rm KHT}$	<i>T</i> /K	$10^{3}S_{\rm KHT}$
	$w_{\rm E} = 0;$	$m_{\rm KCl} =$	0		$w_{\rm E} = 0.1;$	m _{KCl} =	= 0
277.9	2.6511	300.4	6.8682	278.2	1.2176	298.0	3.8066
280.0	2.9771	302.3	7.3696	281.5	1.5172	301.0	4.2998
281.8	3.2884	302.5	7.3693	285.6	1.9077	303.2	4.7690
284.1	3.6485	304.7	7.8994	288.9	2.3981	305.9	5.2392
288.0	4.2969	304.8	7.9001	292.1	2.8548	308.2	5.8054
291.7	4.9301	306.2	8.4787	294.6	3.2903	310.7	6.3448
294.6	5.5644	306.3	8.4789	295.7	3.4172		
296.4	5.9697	308.1	9.1000	$W_{\rm E} =$	0.1; <i>m</i> _{KCl}	= 0.83	3×10^{-3}
298.2	6.4005	308.1	9.0986	279.7	0.7646	294.9	2.5316
298.8	6.4016	310.2	9.7593	283.4	1.0914	301.4	3.5737
300.2	6.8625			286.8	1.5520	307.7	4.8577
<i>W</i> E =	= 0; <i>m</i> _{KCl}	= 0.75	$ imes 10^{-3}$	292.4	2.1694	311.9	5.9175
277.6	1.9511	296.6	5.1409	$W_{\rm E} =$	0.1; <i>m</i> _{KCl}	= 1.66	$7 imes 10^{-3}$
280.1	2.1914	298.6	5.6068	278.8	0.2925	302.4	3.0183
283.7	2.7518	300.2	5.9483	282.9	0.6341	305.5	3.6542
286.9	3.3190	301.1	6.1909	287.1	1.1173	308.5	4.2333
290.4	3.8979	302.3	6.4945	292.0	1.5863	311.2	4.8925
292.0	4.2096	305.4	7.3827	295.9	2.0679	313.3	5.3984
293.1	4.4944	308.4	8.4965	299.6	2.5560		
294.5	4.7813			$W_{\rm E} =$	0.1; <i>m</i> _{KCl}	=1.944	4×10^{-3}
$W_{\rm E}$	$= 0; m_{\rm KCl}$	= 1.5	$\times 10^{-3}$	278.1	0.1542	301.5	2.6915
277.3	1.2154	294.9	4.2217	282.6	0.4831	304.6	3.1994
277.7	1.2430	296.6	4.4596	287.0	0.9440	305.6	3.3628
279.1	1.5018	298.8	5.0247	292.1	1.4235	308.0	3.9505
281.4	1.9369	301.2	5.6106	295.7	1.9435	309.4	4.3041
284.7	2.1873	302.3	5.9454	299.4	2.3853	311.7	4.7597
287.6	2.7491	304.1	6.5450				
290.4	3.3317	308.1	7.5331				
293.2	3.8854						
$W_{\rm E} =$	0; $m_{\rm KCl} =$	2.2368	3×10^{-3}				
278.1	0.7961	296.3	3.8995				
278.6	0.9519	297.5	4.2070				
281.6	1.3727	299.0	4.4853				
284.5	1.9413	301.4	5.0508				
286.6	2.1802	303.7	5.5995				
289.9	2.7473	305.0	5.9229				
292.8	3.3159	306.9	6.5585				

solubility, for the different temperatures, ethanol contents, and KCl compositions in the solutions, are reported in Table 1.

To express the solubility of potassium hydrogen tartrate, $S_{\text{KHT}}/(\text{kg}_{\text{salt}}/\text{kg}_{\text{water}})$, with temperature, *T*/K, and ethanol (w_{E} = ethanol mass fraction in the solvent) and KCl contents,

Figure 2. Experimental (symbols) and calculated (lines) solubilities of potassium hydrogen tartrate in a 10 mass % ethanol + water mixture with different KCl concentrations (g_{salt}/kg_{water}): \triangle , 0; \bullet , 0.83; +, 1.67; \bigcirc , 1.94.

Figure 3. Experimental (symbols) and calculated (lines) solubilities of KCl in water + ethanol mixtures, with different ethanol contents (mass %) in the solvent: \bigcirc , 0; +, 5; \square , 10; *, 15; \triangle , 20.

 Table 2. Parameters for Eq 2

	f_1	f_2
α_1	$-5.930~01 imes 10^{-3}$	-1.602 75
β_1	$2.356~44 imes 10^{-5}$	$5.108~75 imes 10^{-3}$
γ1	$-2.770~61 imes 10^{-3}$	$5.505~92 imes 10^{-2}$
δ_1	$-1.255\ 37$	$-6.946~33 imes10^{-2}$
ϵ_1	$4.873~03 imes10^{-2}$	-1.404 38

the following equation was adjusted to the experimental data:

$$S_{\rm KHT} = A_{\rm I} \left(\frac{\alpha_{\rm I} + \beta_{\rm I} T}{1 + \chi_{\rm I} T} \right) \left(\frac{1 - w_{\rm E}}{A_{\rm I} + w_{\rm E}} \right)$$
(1)

with $A_1 = \delta_1 + \epsilon_1 w_{\rm E} T$.

The coefficients α_1 , β_1 , χ_1 , δ_1 , and ϵ_1 are KCl concentration dependent, and they can all be described by arbitrary functions of $m_{\rm KCl}/(\rm kg_{salt}/\rm kg_{water})$, $f(m_{\rm KCl})$, of the form

$$f(m_{\rm KCl}) = f_1 + f_2 m_{\rm KCl} \tag{2}$$

where the f_i are determined by a least-squares fit of eq 1 to the experimental solubility data. The values for the different coefficients are listed in Table 2. The standard deviation of the fit is 6×10^{-5} kg_{salt}/kg_{water}.

In Figures 1 and 2 the experimental and calculated potassium hydrogen tartrate solubilities, for (0 and 10) mass % ethanol, respectively, are shown.

Table 3. Solubility of Potassium Chloride, S_{KCl} (kg_{salt}/kg_{water}), in Water–Ethanol Mixtures with Various Ethanol Mass Fractions in the Solvent, w_E

<i>T</i> /K	$S_{ m KCl}$	<i>T</i> /K	$S_{ m KCl}$		
	WE	= 0			
282.1	0.308 58	316.2	0.407 32		
286.4	0.321 98	319.9	0.417 75		
289.0	0.328 05	328.6	0.442 13		
292.1	0.337 88	330.6	0.446 68		
297.5	0.356 04	333.1	0.451 54		
301.4	0.366 35	337.3	0.464 85		
304.3	0.375 30	343.8	0.480 86		
305.0	0.377 62	347.5	0.490 94		
307.2	0.383 04	352.8	0.505 46		
312.9	0.400 08	358.3	0.515 34		
$w_{ m E}=0.05$					
281.8	0.271 95	308.6	0.359 32		
285.9	0.288 14	313.9	0.373 70		
288.1	0.292 41	318.0	0.384 12		
291.4	0.306 40	322.0	0.395 55		
296.3	0.322 36	330.8	0.422 22		
298.7	0.329 17	331.4	0.423 46		
301.4	0.336 90	336.6	0.437 20		
303.3	0.343 52	343.1	0.453 85		
305.7	0.348 95	347.8	0.466 12		
307.1	0.352 30				
	$W_{\rm E} =$	0.10			
282.1	0.243 32	314.8	0.349 62		
285.8	0.253 06	319.5	0.362 38		
288.4	0.264 10	325.2	0.378 67		
291.9	0.278 58	329.8	0.392 77		
299.8	0.303 78	335.5	0.407 37		
304.0	0.316 93	337.3	0.412 78		
309.3	0.333 18	345.9	0.434 20		
$W_{\rm E} = 0.15$					
281.7	0.213 01	309.2	0.305 81		
286.9	0.233 11	314.7	0.323 12		
290.7	0.246 87	321.2	0.341 42		
296.8	0.267 52	327.8	0.360 48		
299.5	0.275 35	335.5	0.380 60		
305.3	0.294 56				
$w_{\rm E}=0.20$					
282.2	0.190 31	304.3	0.264 15		
287.5	0.208 36	305.1	0.267 35		
290.9	0.222 01	305.5	0.268 44		
296.5	0.240 30	312.2	0.289 98		
299.9	0.250 76	315.8	0.299 74		
302.2	0 258 47				

 Table 4. Coefficients for Eq 3

α_2	$-8.778~37 imes10^{-1}$
β_2	$5.378~29 imes 10^{-3}$
χ2	$-4.147~04 imes 10^{-6}$
δ_2	$1.032~20 imes 10^{-5}$
ϵ_2	$3.924~87 imes 10^{-2}$

KCl Solubility Data. The experimental results for the KCl solubility, for the different temperatures and ethanol contents, are reported in Table 3.

The experimental solubility data, $S_{\text{KCl}}/(\text{kg}_{\text{salt}}/\text{kg}_{\text{water}})$, were correlated with temperature, *T*/K, and with the mass fraction of ethanol in the solvent (w_{E}) by the empirical equation

$$S_{\rm KCl} = A_2(\alpha_2 + \beta_2 T + \chi_2 T^2) \left(\frac{1 - w_{\rm E}}{A_2 + w_{\rm E}}\right)$$
(3)

with $A_2 = \delta_2 \exp(\epsilon_2 T)$.

 α_2 , β_2 , \varkappa_2 , δ_2 , and ϵ_2 are empirical constants determined from the least-squares fit to the data. The values are listed in Table 4. Calculated solubilities are in good agreement with the measured values (standard deviation of the fit 0.0017 kg_{salt}/kg_{water}) as shown in Figure 3.

The experimental solubilities of potassium hydrogen tartrate in aqueous solutions are compared, in Figure 4,

Figure 4. Experimental and literature solubilities of potassium hydrogen tartrate in aqueous solution as a function of temperature: \Box , this work; +, Perry and Green;¹ •, *Ullmann's Encyclopaedia*.²

Figure 5. Solubilities of KCl as a function of ethanol content in the solvent, for three different temperatures. Lines are calculated values from this work. 298.15 K: \Box , Gerardin;³ \triangle , Seidell;⁴ \blacklozenge , Chiavone and Rasmussen.⁵ 323.15 K: \bigcirc , Gerardin;³ \blacksquare , Chiavone and Rasmussen.⁵ 348.15 K: \blacktriangle , Chiavone and Rasmussen.⁵

with the data available in the literature for this system.^{1,2} The agreement between the experimental and literature values is poor, except near room temperature.

Finally, in Figure 5, the experimental solubilities of KCl in water-ethanol are compared with literature values.^{4,5} In the temperature range (280 to 360) K and up to 40 mass % ethanol in the solvent, eq 3 represents, within \pm 5% mass percent salt, most of the literature data.

Note after ASAP Publication

An incorrect version of Table 2 was used in the original posting of this paper on September 13, 2001. Corrections were made and the paper reposted on September 21, 2001.

Literature Cited

- Perry, R. H.; Green, D. W. Perry's Chemical Engineers' Handbook, 7th ed.; McGraw-Hill: New York, 1997.
- (2) Ullmann's Encyclopaedia of Industrial Chemistry, 5th ed.; VCH: Weinheim, 1989; Vol. A26.
- (3) Gerardin, M. A. Recherches sur la solubilité des sels dans les melanges d'alcool et d'eau. Ann. Chim. Phys. (Paris): Victor Masson et Fils., 1865, Vol. 5, 4th series, 129–160.
- (4) Seidell, A. Solubilities: Inorganic and Organic Compounds, 2nd ed.; van Nostrand Co. Inc.: New York, 1919.
- (5) Chiavone-Filho, O.; Rasmussen, P. Solubilities of salts in mixed solvents. J. Chem. Eng. Data 1993, 38, 367-369.
- (6) Potter, R. W., II; Clynne, M. A. Solubility of highly soluble salts in aqueous media – Part 1, NaCl, KCl, CaCl₂, Na₂SO₄ and K₂-SO₄ solubilities to 100 °C. *J. Res. U. S. Geol. Survey* **1981**, *6*, 701– 705.

Received for review March 29, 2001. Accepted June 14, 2001. JE010105X